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SUMMARY

A Bayesian probabilistic approach is presented for the damage detection of multistory frame

structures. In this paper, a Bayesian probabilistic approach is applied to identify multiple dam-

age locations using estimated modal parameters when (1) the measurement data are potentially

corrupted with noise, (2) only a small number of degrees of freedom are measured, and (3) a few

fundamental modes are estimated. To reduce the potentially intensive computational cost of

the proposed method, a branch-and-bound search scheme is proposed and a simpli�ed approach

for the modeling of multistory frame structures is employed. A six story shear frame example

and two multistory frame examples, with multiple damage locations, are presented to illustrate

the applicability of the proposed approach.
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parameters; multistory frame structures

1 INTRODUCTION

The ability to monitor the health of building structures is an important activity for the

maintenance of a facility. With recent advances in damage detection, the monitoring of

a structure is within the capability of current technology. Damage detection methods

can be classi�ed into model based and non-model based methods [14]. Model based dam-

age detection methods locate and quantify damage by correlating an analytical model

with test data of the damaged structure. Non-model based methods assess damage by

comparing measurements from the undamaged and damaged structures. Model based

methods can provide quantitative information of damage as well as damage locations.

However, these methods are computationally intensive and require a �nite element (FE)

model, which is carefully re�ned with test data of the undamaged structure. While non-

model based methods are simple and straightforward, these methods generally do not

provide quantitative information about structural damage. The proposed method is a

model based method and uses modal vibration test data to characterize the state of the

structure. Typically, the procedure for model based damage detection includes four basic

steps:

1. Model construction: construct an analytical model and identify structural param-

eters which closely represent the structure.

2. Modal testing: estimate modal parameters, i.e. the natural frequencies and the

modal vectors, corresponding to the current state of the structure.
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3. Damage localization: locate the most likely damaged regions using the estimated

modal parameters.

4. Damage assessment and system updating: assess the severity of damage and update

the system parameters.

Model updating and parameter estimation techniques have been developed to improve

the analytical model using estimated modal data [22, 16, 15]. For damage detection, the

analytical model re�ned by the parameter estimating techniques can be employed as

the initial model of the undamaged structure. However, di�erences between the ac-

tual response of the structure and the theoretical response of the analytical model are

unavoidable even after the re�nement. The di�erences arise mainly from two types of

uncertainties. The �rst type of uncertainty is due to the presence of noise in the measure-

ments during vibration tests. The second type of uncertainty is the modeling error which

arises from the assumptions and simpli�cations made during the modeling process [18].

Many damage detection methods assume that the initial analytical model is identical

to the structure before any damage occurrence [25, 17, 3, 11, 19, 20]. The framework

of the proposed method explicitly takes into account the modeling error as well as the

measurement noise.

There are two common modal testing procedures, ambient and forced vibration tests.

A thorough comparison of ambient and forced vibration tests can be found in Refer-

ence [8]. Ambient vibration tests measure dynamic responses during the normal opera-

tion of a structure, and can be easily repeated to collect modal data sets. One di�culty

with ambient tests is that the conventional frequency response function analysis tech-

niques may not be employed because the forcing function is often unknown. Recently

developed system identi�cation techniques are able to estimate modal parameters from

ambient vibration tests [8, 4]. Forced vibration tests are performed by imposing a known

excitation on the structure. Forced vibration tests are generally performed under closely

controlled conditions and, consequently, provide more informative data than those ob-

tained by ambient tests. The time and e�ort required for forced vibration tests are,

however, much greater than those for ambient tests. This study focuses on the devel-

opment of a damage detection method that can be employed in conjunction with an

on-line monitoring system [23]. Since an automated monitoring system for a large civil

structure will most likely use ambient excitation, we assume that experimental modal

data can be accumulated by ambient vibration tests. To best utilize the accumulated

data, we employ a Bayesian probabilistic approach as a heuristic means to combine previ-

ous experimental data with newly available test data. Bayesian probabilistic approaches

have been applied to damage detection problems by previous researchers [3, 2, 9]. To

reduce the potentially intensive computational cost of a Bayesian approach, this paper

employs a branch-and-bound search scheme and a simpli�ed approach for the modeling

of multistory frame structures.

For damage localization and assessment, residual force vectors (also known as damage

vectors or dynamic residual forces) have been employed to locate the most likely damaged

regions which are mathematically expressed in terms of degrees of freedom (DOFs) in

the analytical model [6, 19, 25]. For the calculation of residual force vectors, the DOFs in

the analytical model should coincide with those in the estimated modal vectors. When
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only a small number of sensors are installed, one can use either system condensation

techniques or modal expansion techniques. System condensation techniques reduce the

DOFs de�ned in the analytical model to the measured DOFs. Reduction techniques

often produce a condensed matrix that does not resemble the member connectivity of

the original model. As a result, locating damaged members from the residual force

vectors of the reduced system becomes very di�cult [5, 10]. An alternative is to expand

the modal vectors, based on the measurements at the instrumented DOFs, to the size of

the analytical model [21, 13]. Modal expansion methods generally do not produce the

results that are accurate enough to provide reliable information about damaged DOFs

or damaged structural members.

Instead of employing residual force vectors, we search for the most probable damage

locations by comparing the relative probabilities for di�erent damage events. The relative

probability of a damage event is expressed in terms of the posterior probability of the

damage event, given the estimated modal data sets from the structure. In the proposed

method, the formulation of the relative posterior probability is based on the modal output

error, which is de�ned as the di�erence between the estimated modal parameters and the

theoretical modal parameters from the analytical model. Using an output error approach,

we avoid the aforementioned problems introduced by either modal expansion or reduction

techniques.

This paper is organized as follows: The next section describes the theoretical formu-

lation of the Bayesian probabilistic approach. Section 3 presents numerical examples to

illustrate the e�ectiveness of the proposed method. Section 4 summarizes this paper and

discusses future work.

2 THEORETICAL FORMULATION

This section presents a damage detection method based on a Bayesian probabilistic ap-

proach. First, explicitly considering both modeling and noise errors, we formulate the

relative posterior probability of an assumed damage event, which can include multiple

substructures as damaged. For the assumed damage locations, the most likely amount

of damage is also determined during the calculation of the relative posterior probability.

Second, we apply a branch-and-bound search scheme to identify the most likely damage

event without searching through all possible damage events. Third, to simplify three

dimensional multistory frame analyses, a modeling technique based on the rigid oor

diaphragm assumption is employed and extended for damage detection.

2.1 Notations and Assumptions

For an analytical model of a structure, we represent the system sti�ness matrix K as

an assembly of substructure sti�ness matrices. For a model with Nsub substructures, the

overall sti�ness matrix can be expressed as:

K(�) =
NsubX
i=1

�iKsi (1)

where Ksi is the sti�ness matrix of the ith substructure and �i (0 � �i � 1) is a nondi-

mensional parameter which represents the contribution of the ith substructure sti�ness
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to the system sti�ness matrix. The nondimensional parameter �i is introduced to allow

the modeling of damage in the ith substructure. A substructure is said to have damaged

when the � value is less than a speci�ed threshold. As damage locations and amount

are determined according to the � values, the system sti�ness matrix in Equation (1) is

expressed as a function of � =
n
�i; i = 1; :::; Nsub

o
.

Modal data sets are assumed to be collected and estimated from repeated or contin-

uous vibration tests. When vibration tests are repeated Ns times, the total collection of

Ns modal data sets is denoted as:

	̂Ns
=
n
 ̂(n) : n = 1; :::; Ns

o
(2)

A modal data set  ̂(n) in Equation (2) consists of both the frequencies and the modal

vectors estimated from the nth vibration test, i.e.,

 ̂(n) =
h
!̂n1 ; :::; !̂

n

Nm
; v̂nT1 ; :::; v̂nT

Nm

iT
2 RNt (3)

where !̂ni and v̂n
i
respectively denote the ith estimated frequency and modal vector in

the nth data set. The modal vector v̂n
i
(v̂n

i
2 RNd) has components corresponding to

the instrumented DOFs. The variables Nt; Nd and Nm represent the total number of

components in a data set  ̂(n), the number of the measured DOFs and the number of

measured modes, respectively.

Let Hj denote a hypothesis for a damage event which can contain any number of

substructures as damaged, and the initial degree of belief about the hypothesis Hj is rep-

resented with a prior probability P (Hj). Using Baye's theorem, the posterior probability

P (Hjj	̂Ns
), after observing a set of estimated modal parameters 	̂Ns

, can be represented

as:

P (Hjj	̂Ns
) =

P (	̂Ns
jHj)

P (	̂Ns
)
P (Hj) (4)

The most likely damaged substructures are the ones included in the hypothesis Hmax

which has the largest posterior probability, i.e.

P (Hmaxj	̂Ns
) = max

8Hj

P (Hjj	̂Ns
) (5)

Since the objective is to determine the most probable damage hypothesis, the rel-

ative posterior probabilities of alternative hypotheses are of interest. We attempt to

avoid the explicit expression of a posterior probability P (Hjj	̂Ns
) and the examination

of all hypotheses. The precise calculation of P (	̂Ns
jHj) is a di�cult task. Further-

more, the calculation of the denominator P (	̂Ns
) in Equation (4) involves summing

P (	̂Ns
jHj) � P (Hj) over every possible hypothesis. The number of all possible damage

events (the size of hypothesis space) for a structure with Nsub substructures is equal to

2Nsub. For a large structure, the size of the hypothesis space easily becomes intractable

and the computational cost is prohibitive. To overcome these di�culties, we focus on the
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relative comparisons of posterior probabilities, and devise a branch-and-bound method to

facilitate the search of the hypothesis space. In addition, a simpli�ed modeling technique

is employed for multistory frame analyses. The following subsections discuss these three

issues.

2.2 Determination of the Most Probable Damage Event

When applying Equation (4) to calculate the posterior probability P (Hjj	̂Ns
), the

only unde�ned term is P (	̂Ns
jHj). The prior probability of a hypothesis P (Hj) is the

prior information given by users and the probability of estimated modal data P (	̂Ns
) is

simply a normalizing constant.

As shown in Equation (1), less than a unity value for �i reects the sti�ness decrease

in the ith substructure. As noted earlier, when �i is less than a speci�ed threshold

��
i
(< 1), the ith substructure is de�ned as damaged. If we de�ne �1

Hj
as a set of �i's

corresponding to the damaged substructures in a hypothesis Hj and �2
Hj

as the rest

of �i's, the conditional probability P (	̂Ns
jHj) can be interpreted as the probability of

obtaining 	̂Ns
, when �i's in �1

Hj
are less than or equal to their threshold ��

i
's and the

remaining �i's stay within ��
i
< �i � 1. Denoting 
�

Hj
as the range of �Hj

such that

0 � �1
Hj
� �

1;�
Hj

and �
2;�
Hj
< �2

Hj
� 1, the conditional probability P (	̂Hj

jHj) becomes:

P (	̂Ns
jHj) = P (	̂Ns

j�Hj
< 
�

Hj
) =

P (	̂Ns
;�Hj

< 
�

Hj
)

P (�Hj
< 
�

Hj
)

=
P (�Hj

< 
�

Hj
j	̂Ns

) P (	̂Ns
)

P (�Hj
< 
�

Hj
)

=
P (	̂Ns

)

P (�Hj
< 
�

Hj
)

Z
�Hj

<
�

Hj

f(�Hj
j	̂Ns

)d�Hj
(6)

where �
1;�
Hj

and �
2;�
Hj

are the sets of damage thresholds for �1
Hj

and �2
Hj
, respectively,

and f(�Hj
j	̂Ns

) is a conditional probability density function (PDF) of �Hj
given 	̂Ns

.

Furthermore, �Hj
< 
�

Hj
indicates that �Hj

are within the range of 
�

Hj
such that

0 � �1
Hj
� �

1;�
Hj

and �
2;�
Hj
< �2

Hj
� 1.

If we de�ne the most probable parameter values �max

Hj
, given a hypothesis Hj, such

that:

f(�max

Hj
j	̂Ns

) = max
�Hj

<
�

Hj

f(�Hj
j	̂Ns

) (7)

then the upper bound of P (	̂Ns
jHj) in Equation (6) becomes:

PU(	̂Ns
jHj) =

P (	̂Ns
)

P (�Hj
< 
�

Hj
)

Z
�Hj

<
�

Hj

f(�max

Hj
j	̂Ns

)d�Hj

=
P (	̂Ns

)

P (�Hj
< 
�

Hj
)
f(�max

Hj
j	̂Ns

)

Z
�Hj

<
�

Hj

1 d�Hj
(8)
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For simpli�cation, we assume if damage occurs, it could have any arbitrary amount with

equal probability. That is, we assign a uniform probability density function to �i such

that:

f(�i) =

(
1 if 0 � �i � 1

0 otherwise
(9)

Furthermore, if �i's are assumed to be independent, the following two equations hold:

f(�Hj
) =

Y
8 �i2�Hj

f(�i) = 1 (10)

1

P (�Hj
< 
�

Hj
)
=

1R
�Hj

<
�

Hj

f(�Hj
)d�Hj

=
1R

�Hj
<
�

Hj

1 d�Hj

(11)

Substituting Equation (11) into Equation (8), PU(	̂Ns
jHj) can be simpli�ed as:

PU(	̂Ns
jHj) = f(�max

Hj
j	̂Ns

) P (	̂Ns
) (12)

The next step is to compute the conditional PDF, f(�max

Hj
j	̂Ns

). First, let's de�ne a

modal error e(n;�Hj
) as:

e(n;�Hj
) =  ̂(n)�  (�Hj

); n = 1; :::; Ns (13)

where  ̂(n) is de�ned in Equation (3). Given �Hj
, an analytical modal data set  (�Hj

)

is de�ned similar to Equation (3) and is obtained by solving an eigenvalue problem,

K(�Hj
)vi(�Hj

) = !2
i
(�Hj

)Mvi(�Hj
):

 (�Hj
) =

h
!1(�Hj

); :::; !Nm
(�Hj

);vT1 (�Hj
); :::;vT

Nm
(�Hj

)
iT
2 RNt (14)

It should be noted that, for a modal vector vi(�Hj
) in Equation (14), only the components

associated with the measured DOFs are included.

The modal error reects the discrepancy between the measured response of the struc-

ture and the response of the associated analytical model. Two types of uncertainties

account for this discrepancy. The �rst type of uncertainty is the measurement uncer-

tainty caused by the presence of noise during vibration tests. The noise speci�cally

accounts for the di�erence between the unknown true response and the measured re-

sponse of the structure. The second type of uncertainty arises from the assumptions

and simpli�cations introduced in the modeling process. Thus, the modal error de�ned in

Equation (13) can be divided into two parts:

e(n;�Hj
) = eN(n) + eM (�Hj

) (15)

where eN (n) is the modal error caused by the measurement noise in the nth vibration data

set and eM (�Hj
) is the modal error caused by the modeling error. Assuming that each
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entry or component of eN(n) is a normal distribution with zero mean, the expectation

on both sides of Equation (15) with respect to Ns data sets becomes:

E[e(n;�Hj
)] = E[eN(n)] +E[eM(�Hj

)] = eM(�Hj
) (16)

where eM(�Hj
) is assumed to be constant for allNs data sets. That is, the modeling error

is caused only by the inherent di�erence between the analytical model and the structure

regardless of the noise existence.

It appears that eM (�Hj
) changes according to the damage locations and amount.

However, when damage is not severe, the modeling error can be assumed not to change

signi�cantly. In other words, the modal error caused by the modeling error eM (�Hj
) can

be assumed to be constant and be approximated by eM(�Ho
), which is the modal error

caused by the modeling error in the healthy (undamaged) state of the structure:

eM (�Hj
) �= eM(�Ho

); 8�Hj
(17)

where Ho is a null hypothesis that there is no damage in the structure and the � values

of the healthy structure are calibrated to have unity values before any damage occurs.

From the de�nition of the modal error and Equation (16), eM (�Ho
) can be evaluated

from the estimated and the analytical modal parameter sets:

eM(�Ho
) = E[e(n;�Ho

)] = E[ ̂h(n)]�E[ (�Ho
)] =  ̂h

m
�  (�Ho

) (18)

where the superscript h denotes the properties of the healthy structure. Since  (�Hj
)

is constant with respect to the Ns data sets, E[ (�Ho
)] =  (�Ho

). Furthermore, the

sample mean  ̂h
m
is used to approximate the expectation E[ ̂h(n)]. The ith component

of  ̂h
m
is calculated such that:

E[ ̂h
i
(n)] �=  ̂h

m;i
=

1

Nh
s

Nh
sX

n=1

 ̂h
i
(n) (19)

where i = 1; :::; Nt and N
h

s
is the number of modal data sets before damage occurrence.

As a result, eM (�Hj
) can be evaluated from the measured modal parameter set  ̂h(n)

of the healthy structure and the modal parameter set  (�Ho
) of the initial analytical

model:

eM(�Hj
) �= eM(�Ho

) =  ̂h
m
�  (�Ho

) ; 8�Hj
(20)

From the results of Equations (16) and (17), the error fei(n;�Hj
);n = 1; :::; Nsg for

each component becomes a multivariate normal distribution with mean eM;i(�Ho
) and

variance �i. Variance �i can be evaluated from the observation of the estimated modal

parameter sets. When a large number of experimental data sets are available, sample

standard deviations (or variances) can be extracted from the data set. When modal data

sets available are not su�cient to estimate the variances, we assign uniform coe�cient of
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variance (COV) to all modal parameters. Assuming that the components of the modal

error e(n;�Hj
) are independent, the conditional joint PDF of �Hj

becomes:

f(�Hj
j	̂Ns

) = f(e(n;�Hj
)j	̂Ns

) = k � exp
n
� J(	̂Ns

;�Hj
)
o

(21)

where k = 1

[2�]
Ns

2

1

kC
	̂
k
1

2

and kC	̂k = detjdiag[�21; :::; �
2
Nt
]j =

Q
Nt

i=1 �
2
i
. Furthermore, the

error function J(	̂Ns
;�Hj

) is:

J(	̂Ns
;�Hj

) = (22)

1

2

NsX
n=1

[ ̂(n)�  (�Hj
)� eM(�Ho

)]TC�1

	̂
[ ̂(n)�  (�Hj

)� eM (�Ho
)]

From Equations (4), (12) and (21), the upper bound of P (Hjj	̂Ns
) becomes:

PU(Hjj	̂Ns
) = f(�max

Hj
j	̂Ns

)P (Hj) = exp
n
� J(	̂Ns

;�max

Hj
)
o
� P (Hj) � k (23)

From Equation (23) and the fact that the relative comparison of PU(Hjj	̂Ns
) is indepen-

dent of the constant k, the following relationships hold:

max
h
PU(Hij	̂Ns

); PU(Hjj	̂Ns
)
i
= max

h
ln PU(Hij	̂Ns

); ln PU(Hjj	̂Ns
)
i

= min
h
J(	̂Ns

;�max

Hi
)� lnP (Hi); J(	̂Ns

;�max

Hj
)� lnP (Hj)

i
(24)

where ln denotes natural log. Therefore, the most probable hypothesis Hmax in Equa-

tion (5) satis�es:

J(	̂Ns
;�max

Hmax
)� lnP (Hmax) = min

8Hj

h
J(	̂Ns

;�max

Hj
)� lnP (Hj)

i
(25)

Now, the comparison of posterior probabilities can be conducted by examining only

the error function J(	̂Ns
;�max

Hj
) and the prior probability P (Hj). It should be noted that

PU(Hjj	̂Ns
) is employed rather than P (Hjj	̂Ns

) in Equation (24). The use of PU(Hjj	̂Ns
)

can be justi�ed as follows: First, assume that Hd and �
max

Hd
correspond to the actual dam-

age locations and amount. In addition, noise e�ect is ignored for the current argument.

Then, we can expect an inequality f(�max

Hd
j	̂Ns

) � f(�Hj
j	̂Ns

) for any Hj and �Hj
.

That is, the conditional PDF of observing Hd and �max

Hd
is expected to be higher than or

equal to any other damage cases (the equality holds when Hj = Hd and �Hj
= �max

Hd
).

From this observation and the fact that PU(Hjj	̂Ns
) =

R
�Hj

<
�

Hj

f(�max

Hj
j	̂Ns

)d�Hj
,

PU(Hdj	̂Ns
) � PU(Hjj	̂Ns

) holds for all Hj. However, if �Hd
di�ers from �max

Hd
, the

conditional PDF f(�Hd
j	̂Ns

) can be less than other conditional PDFs even though Hd
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corresponds to the actual damage locations. In other words, the PDF of correct damage

locations and incorrect damage amount can be lower than PDFs of some other damage

cases (f(�Hd
j	̂Ns

) < f(�Hj
j	̂Ns

) for some Hj and �Hj
). Consequently, P (Hdj	̂Ns

) can

be less than P (Hjj	̂Ns
) for some Hj. In this case, we may fail to identify the actual dam-

age event. Therefore, the use of PU(	̂Ns
jHd) appears to increase the chance of identifying

the actual damage locations and amount.

For given modal data, while we are interested in the probability PU(Hjj	̂Ns
) of the

assumed damage locations, the approach in Reference [3] calculates the conditional PDF

f(�j	̂Ns
) where � = f�1; :::; �Nsub

g, and �i is de�ned as a continuous variable with

states ranging from 0 to 1. To obtain the probability for some parameter set �, a

multi-dimensional integration for a desired � space is required. This multi-dimensional

integral may not be feasible for a large scale model. This problem can be simpli�ed by

assuming that damage is localized in only a single substructure [3]. As an alternative,

an asymptotic approach is proposed in Reference [2]. However, the asymptotic approach

requires the calculation of all the maxima of f(�j	̂Ns
), which is also a computationally

expensive task.

In this study, we de�ne the state of a substructure as damaged or undamaged. The

binary states make it possible to construct a tree representation of all possible damage

cases. The damage tree starts with a null hypothesis Ho that no damage is present. From

the root, the �rst level branches are extended by adding a substructure as damaged one

at a time. For a system with Nsub substructures, the number of the �rst level branches

becomes Nsub
C1. Here, we de�ne NCK(=

N !
K!(N�K)!

) as the number of combinations of

K items out of a population N . From each �rst level branch, the second level branches

are extended by adding another substructure as damaged. The total number of the

second level branches becomes Nsub
C2. For a system with Nsub substructures, the damage

tree has a total Nsub levels of branches and the total number of branches is 2Nsub =Nsub

C0 +Nsub
C1 + ::: +Nsub

CNsub
. Clearly, the number of alternatives remains large. The

complexity can be signi�cantly reduced by a branch-and-bound search scheme, which is

originally proposed for the diagnosis of multiple diseases [12].

2.3 A Branch-and-Bound Search Scheme

A branch-and-bound search scheme is proposed to expedite the search for the most

likely damage case without exhaustively examining all the possible combinations of dam-

aged substructures. Starting from the null hypothesis H0 that no damage is present,

one substructure is added as a possible damage location at a time to generate extended

hypotheses. The posterior probabilities of hypotheses are examined in terms of their

error functions and the prior probabilities as de�ned in Equation (25). Each hypothesis

keeps extending by adding a new substructure as damaged until the further addition of

substructures does not lead to a more probable hypothesis. The key requirement is a

bounding heuristic which allows us to rule out further extensions of a hypothesis. In this

study, the following two pruning heuristics are adopted.

1. Let Hj[Di denote an extension of hypothesis Hj by adding the ith substructure as

damaged. If a posterior probability of Hj [Di is less than that of Hj, then further
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extension of Hj [Di is ruled out; i.e.

if P (Hj [Dij	̂Ns
) < P (Hjj	̂Ns

); stop extending Hj [Di: (26)

2. If a posterior probability of Hj is less than Pmax, which is the largest posterior

probability among all the hypotheses examined so far, then further extension of Hj

is ruled out; i.e.

if P (Hjj	̂Ns
) < Pmax; stop extending Hj: (27)

Using Equation (26), we can exclude the extension of Hj [Di when the addition of the

ith substructure as damaged is found not to lead to a more probable hypothesis. In

addition, when the �rst Hj is found such that P (Hjj	̂Ns
) > P (Hj [ Dij	̂Ns

) for all

substructures not included in Hj (8Di 62 Hj), P (Hjj	̂Ns
) is the �rst local maximum

posterior probability in the current branching direction of damage events. That is, the

criterion in Equation (26) guarantees that the �rst local maximum posterior probability

in every branching direction is found. Unfortunately this pruning heuristic is not a

strong criterion for the system with a large number of substructures since all branches

are subject to further extensions until the �rst local maximum point is found.

As a complementary criterion, Equation (27) excludes the further branching of the

newly extended hypotheses which have posterior probabilities less than the largest pos-

terior probability among the hypotheses examined so far. The second criterion can be

easily modi�ed to include n number of the newly extended hypotheses for the further

branching by replacing Pmax in Equation (27) with the nth largest posterior probability

P n

max
. By using the nth largest posterior probability, we can make an explicit trade-o�

between the better diagnosis and the computational e�ciency.

2.4 Modeling of Multistory Frame Structures

The modeling of a multistory frame structure can be simpli�ed by assuming that

(1) the oor diaphragm is rigid in its own plane and only exible in the vertical direction,

(2) the rotational and vertical DOFs can be condensed out of the dynamic analysis, and

(3) the axial deformations of beams and columns are negligible [7]. The system sti�ness

matrix of a multistory frame structure is determined from the lateral sti�ness matrices

of individual planar frames. The modeling process can be summarized as follows:

1. The sti�ness matrix of each planar frame is �rst computed. Using the same notation

as in Equation (1), the sti�ness matrix of a frame j can be written as:

K(�)j =
X
8i2j

�iKsi (28)

where the assembly is performed for each substructure i in the jth planar frame

(8i 2 j). Neglecting axial deformations in the columns and beams, the model of a

planar frame has one in-plane rotational DOF at each node and one lateral DOF

at each oor level [see Figure 1 (a)].
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Figure 1: Calculation of Lateral Sti�ness by Condensing out Rotational DOFs

2. The lateral sti�ness matrix of the individual planar frame is determined from the

sti�ness matrix of the planar frame. The sti�ness matrix of the planar frame can

be partitioned according to the lateral (l) and rotational (r) DOFs, respectively:

K(�)j =

"
Kll;j Klr;j

Krl;j Krr;j

#
(29)

Since the inertial e�ects associated with the rotational DOFs are usually small, the

rotational DOFs can be condensed out of the dynamic analysis of the structure [see

Figure 1 (b)]. Using static condensation, the lateral sti�ness of the planar frame
�K(�)j becomes:

�K(�)j = P(�)
T

j
K(�)jP(�)j (30)

where

P(�)j =

"
I

�K�1
rr;jKrl;j

#
(31)

and I is an identity matrix. It should be noted that the transformation matrix

P(�)j is expressed as a function of �.

3. Using compatibility conditions, the displacement transformation matrix Gj can be

de�ned to relate the lateral displacements of the jth frame to the global DOFs of

the system:

uj = Gju; j = 1; :::; Nf (32)

where Nf is the number of planar frames, u are the global DOFs and uj are the

lateral DOFs of the jth planar frame. Figure 2 (a) shows the global DOFs of the

system and the lateral DOFs of planar frames in the ith oor of a multistory system.

An example of the displacement transformation matrix is shown in Figure 2 (b).
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Figure 2: Global DOFs of a System and Lateral DOFs of Planar Frames

4. Finally the system sti�ness matrix of the simpli�ed model is obtained by assembling

the transformed sti�ness matrices of all the planar frames:

K(�) =

NfX
j=1

G
T

j
�KjGj =

NfX
j=1

G
T

j
P(�)T

j
K(�)jP(�)jGj

=

NfX
j=1

T(�)T
j
K(�)jT(�)j (33)

where T(�)j=P(�)jGj. After substituting Equation (28) into Equation (33) and

some manipulations, the sti�ness matrix of the simpli�ed model can be represented

in a similar way to Equation (1):

K(�) =

NfX
j=1

X
8i2j

�iT(�)
T

j
KsiT(�)j =

NsubX
i=1

�i �K(�)si (34)

where the e�ective sti�ness contribution of the ith substructure is:

�K(�)si =
X
8j3i

T(�)T
j
KsiT(�)j (35)

To obtain the e�ective sti�ness contribution of the ith substructure, the assembly

is performed for all planar frames which include the ith substructure (8j 3 i).

For example, when the ith substructure is common to planar frames 1 and 2,

the sti�ness contribution of the ith substructure to the system sti�ness matrix is

�i(T(�)
T

1KsiT(�)1 + T(�)T2KsiT(�)2).

This approach neglects compatibility of deformations in columns which are common

to more than one frame. The assumption is acceptable except for tall slender buildings

or tube type structures [1]. The system mass matrix is diagonalized by lumping the oor

mass and the half masses of columns connected to the oor. The moment of inertia of the

oor diaphragm is calculated about the vertical axis through the center of mass. Since

the damage detection method requires repeated solution of the eigenvalue problem, the

computational cost is signi�cantly reduced by using the simpli�ed model.

12



3 NUMERICAL EXAMPLES

This section presents three examples to illustrate the Bayesian probabilistic approach for

the damage detection of frame structures. The example structures include a six story

shear frame structure, and a two story and a �ve story three dimensional frame structure.

For all examples, a uniform prior probability is assigned to all hypotheses. Therefore,

the determination of the most probable hypothesis in Equation (25) depends only on the

error function J(	̂Ns
;�max

Hj
). For all numerical examples, the search space �Hj

< 
�

Hj

in Equation (7) is evaluated at the intersection of grid lines which discretizes the search

domain with an incremental step ��. For the presented numerical examples, we use an

incremental step �� = 0.1. In addition, a value of 0.9 is used for the damage thresh-

old �� for every substructure. That is, over 10% decreases in the sti�ness are de�ned

as damage. Instead of the largest posterior probability Pmax, we use the third largest

posterior probability P 3
max

(< P 2
max

< P 1
max

= Pmax) in Equation (27) to investigate a

larger subspace of the hypothesis space. The branch-and-bound search in the presented

examples follows a depth-�rst/best-�rst search strategy. Each modal vector is normalized

with respect to the absolute maximum component in the modal vector. Since one com-

ponent is used for normalization, only Nd � 1 pieces of information exist for each mode.

For the examples shown below, Ldam and Ddam denote the actual damage locations and

the associated damage amount, respectively. L̂dam and D̂dam denote the most probable

damage locations and the associated damage amount estimated by the proposed method.

In addition, the measured DOFs and the estimated modes are denoted by DOFm and

MODEm, respectively.

3.1 A Six Story Shear Frame Structure

The �rst example structure is the six story shear frame structure shown in Figure 3.

The frame structure consists of six DOFs and six substructures corresponding to each

oor story. To simulate measurement uncertainties in the estimated modal parameters,

the exact modal parameters, obtained from the analytical model with the assumed dam-

age, are perturbed with noise. More explicitly, the estimated modal parameter set  ̂(n)
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Figure 3: A Six Story Shear Frame Model
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in Equation (3) is constructed such that:

 ̂(n) =  (1 +
N

100
R) (36)

where  is the exact modal parameter set obtained from the analytical model, N is a

speci�ed noise level in terms of percentage, and R is a normally distributed random

number with zero mean and a variance of 1.0. This process is repeated Ns times to

simulate the Ns modal data sets.

Since the estimated modal parameters are simulated by adding noise to the exact

modal parameters, the modal error de�ned in Equation (15) arises only from noise error,

i.e. e(n;�Hj
) = eN(n;�Hj

). Therefore the error function shown in Equation (22) is

simpli�ed as:

J(	̂Ns
;�Hj

) =
1

2

NsX
n=1

[ ̂(n)�  (�Hj
)]TC�1

	̂
[ ̂(n)�  (�Hj

)] (37)

This example investigates the applicability of the proposed method subject to the

e�ects of (1) the noise level in the estimated modal data, (2) the number and the selection

of estimated modes and measured DOFs, (3) the locations and the amount of damage,

and (4) the number of modal data sets.

3.1.1 E�ect of Noise Level in the Estimated Modal Data

The proposed method is �rst tested to show that it does not give a false-positive

indication of damage (the case of indicating damage when in fact damage does not exist).

There cases are conducted assuming 3%, 5% and 10% noise levels. For each case, 10 sets of

modal parameters are simulated from the undamaged structure, the DOFs corresponding

to the second and fourth stories are measured, and the �rst and the second modes are

identi�ed. For all cases, the proposed method does not provide a false-positive indication.

Next, the e�ect of noise in the measured data is investigated. Four cases are conducted

by varying the noise levels from 0.5% to 10%. For all cases, the sti�nesses of the second

and the sixth stories are decreased by 30% and 10%, respectively, i.e. Ldam = f2; 6g and

Ddam = f30%; 10%g. The measurements are made at the second and the fourth stories,

and the �rst and the second modes are identi�ed, i.e. DOFm=f2, 4g and MODEm=f1,

2g. Three sets of modal parameters are collected (Ns=3). Table 1 summarizes the results.

The rank in the table indicates the rank of the actual damage event when the posterior

probabilities of all examined hypotheses are sorted in descending order. As the noise level

increases from case 1 to cases 2, 3 and 4, the rank of the actual damage event decreases.

3.1.2 E�ect of Measured DOFs

The e�ect of measured DOFs is examined by changing the number and locations of

the measured DOFs. Five cases are conducted by assuming Ldam = f2; 6g; Ddam =

f30%; 10%g; Ns = 5 and a 10% noise level for the estimated modal parameters. Table

2 shows the results. When the modal vectors are obtained from the measurements on all

14



Table 1: E�ect of Noise Level

Case Noise level Rank

1 0.5% 1

2 1.0% 5

3 5.0% 8

4 10.0% 10

Ldam=f2,6g, Ddam=f30%,10%g, Ns=3

Measured DOFs=f2,4g, Estimated Modes=f1,2g

DOFs (case 1) or on alternative oors (case 2), the proposed method correctly identi�es

the damage locations even in the presence of a 10% noise. As the number of measured

DOFs decreases to two or one (cases 3, 4 and 5), the proposed method fails to rank

the actual damage event as the most likely one. In case 5 of Table 2 (where only one

DOF is measured), the proposed method uses only the estimated frequency information.

No information is provided from modal vectors since the normalization of modal vectors

requires the measurements of more than two DOFs. If a larger number of modal data

sets were available, the diagnosis result could be improved. This is true even for the cases

where only a limited number of locations are measured, and the data have relatively high

noise level (see subsection 3.1.6).

Table 2: E�ect of Measured DOFs

Case DOFm Rank

1 all 1

2 1,3,5 1

3 3,5 15

4 2,4 14

5 3 13

Ldam=f2,6g, Ddam=f30%,10%g, Ns=5

Estimated Modes=f1,2g, Noise=10%

3.1.3 E�ect of Multiple Damage Locations

One salient feature of this work is that multiple damage locations in a structure

can be detected. As noted earlier, a branch-and-bound search scheme is employed to

facilitate the search of multiple damage locations. Figure 4 presents a typical result of

the branch-and-bound search. In this Figure, 10%, 20% and 30% damages are assumed

in the �rst, the third and the �fth stories, respectively (Ldam=f1, 3, 5g and Ddam =

f10%; 20%; 30%g). The �rst two modes are estimated by the measurements on the

second and the fourth stories (DOFm=[2, 4] and MODEm=[1, 2]). In addition, 10

modal data sets are simulated by assuming a 5% noise level (Ns=10 and Noise=5%).

Figure 4 shows that the proposed method �nds the actual damage locations after

searching 39 hypotheses out of the 64 possible hypotheses. The �rst story is detected

as damaged immediately in the �rst step of branching. Since the decrease of the �rst

story sti�ness has a signi�cant e�ect on all modal parameters, the �rst story is easily

15
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Figure 4: A Branch-and-Bound Search for Damage Locations of A Six Story Shear Frame Structure
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detected as a damaged substructure. In the next step, the �fth story, which has the

largest damage amount, is detected. Finally the third story is added as one of the

possible damage locations. The correct damage hypothesis is extended one more step

and bounded for further branching because the posterior probabilities of the extended

hypotheses are lower than that of the correct hypothesis.

Figure 4 follows a depth-�rst/best-�rst search strategy. After the �rst extension of

H[0] to H[1], H[4], H[6], H[5], H[2] and H[3], P (H[6]j	̂Ns
) is assigned to P 3

max
. Since the

posterior probabilities of H[1], H[4] and H[6] are larger or equal to the current P 3
max

, only

these three branches remain for further extensions. Next, H[1] is extended since H[1] has

the highest posterior probability among H[1], H[4] and H[6] (best-�rst search). After this

extension, P 3
max

is changed to P (H[1,4]j	̂Ns
). Among the subtrees of H[1], only H[1,6],

H[1,5] and H[1,4] remain for further extensions. In the next step, since we employ a

depth-�rst search scheme, H[1,6] is �rst extended rather than H[4]. When we extend

H[4] to H[4,6], H[4,5], H[2,4] and H[3,4], all branches below H[1] are already extended.

That is, at this stage, P 3
max

has been changed to P (H[1,2,5,6]j	̂Ns
) which is the third

largest posterior probability among the hypotheses examined so far. Since the posterior

probabilities of H[4,6], H[4,5], H[2,4] and H[3,4] are less than the current P 3
max

, further

extensions are excluded.

In place of the largest posterior probability in Equation (27), Figure 4 uses the third

largest posterior probability among the hypotheses examined so far as the pruning cri-

terion. If the largest posterior probability had been used in Figure 4, the branching

from hypothesis H(1) to H(1,5) would have been excluded. For the detection of multiple

damage locations, the pruning heuristic in the branch-and-bound search scheme should

be loosened to include a larger subspace of the hypothesis space. Examining more hy-

potheses increases the chance of capturing the actual damage event. In real situations,

the proposed method may not �nd all the damaged substructures, but, very likely it can

�nd the damage locations which have signi�cant e�ect on the modal parameters.

3.1.4 E�ect of Damage Amount

For all three cases in Table 3, we assume a 5% noise level, �ve sets of modal data, and

the estimation of the �rst and the second modes with the measurement on the second

and the fourth stories. The proposed method identi�es the actual damage event for case

1, where 30% and 10% decreases in the sti�ness are simulated in the second and the

sixth stories, respectively. As damage in the second and the sixth stories respectively

increases to 60% and 20% (case 2), the rank of the actual damage event decreases. When

more severe damage is assumed for case 3 (L̂dam=f2,6g and D̂dam=f90%, 30%g), the

rank of the actual damage event becomes lower. In spite of the absolute increase of

damage in both the stories from case 1 to cases 2 and 3, the diagnosis result worsens.

This phenomenon can be explained as follows: Since, in the current example structure,

the second story sti�ness has more signi�cant e�ect on the modal parameters and larger

damage than the sixth story sti�ness, the second story becomes more detectable than the

sixth story (for all cases, the branch-and-bound search identi�es the second story �rst).

On the other hand, the sixth story becomes less detectable as the di�erence of damage

between the second and the sixth stories increases. This implies that, for the detection
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Table 3: E�ect of Damage Amount

Damage Amount

Case 2nd story 6th story Rank

1 30% 10% 1

2 60% 20% 21

3 90% 30% 28

Measured DOFs=f2,4g, Ns=5

Estimated Modes=f1,2g, Noise=5%

of multiple damage locations, the proposed method depends on the relative damage

amount among the damaged substructures as well as the absolute damage amount of each

substructure. The cases shown in Table 3 use a value of 0.9 as the damage threshold

value �� for all substructures. That is, the damaged substructures with less than 10%

sti�ness decrease may not be detected. If a higher damage threshold value (> 0:9) and

a smaller ��, which is an incremental value implemented to search the nondimensional

parameter space �Hj
< ��

Hj
in Equation (7), are used, the proposed method can identify

smaller damage. For the cases shown in Table 4, we set the damage threshold value ��

to 0.99 and the incremental value �� to 0.01. Four cases are conducted by changing the

damage locations and amount. For all cases, less than 10% sti�ness decrease is assumed.

In spite of a small damage amount, all cases converge to the actual damage event. The

problem is that the smaller the incremental value ��, the more the computation time is

required. Also the measured data with lower noise level is necessary for the detection of

small damage.

3.1.5 E�ect of Mode Selection

To study the e�ect of mode selection, the estimated modes are changed for each case.

For all cases, the damage amount of the second and the sixth stories is assumed to be

30% and 10% respectively. Three modal data sets are collected and a 5% noise level is

assumed. Measurements are made on the second and the fourth stories.

Table 5 presents the diagnosis results obtained by using four di�erent mode selection

strategies. When all six modes are estimated in case 1, the proposed method ranks the

actual damage event as the most probable one. From the results of cases 2, 3 and 4,

where two di�erent modes are estimated for each case, it appears that the selection of

the third and the fourth modes yields better assessment than the other two selection

strategies for the detection of the assumed damage locations Ldam=f2, 6g.

Table 4: Detection of Small Damage

Case Ldam Ddam Noise Ns Rank

1 f3g f3%g 2% 20 1

2 f1,3g f5%,5%g 2% 100 1

3 f2,6g f5%,3%g 5% 100 1

4 f2,3g f5%,3%g 5% 50 1

Measured DOFs=f2,4g, Estimated Modes=f1,2g
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Table 5: E�ect of Mode Selection

Case Estimated Modes Rank

1 all 1

2 1, 2 8

3 3, 4 1

4 5, 6 7

Ldam=f2,6g, Ddam=f30%,10%g, Ns=3

Measured DOFs=f2,4g, Noise=5%

What modes should be selected depends on the speci�ed damage locations. Unfortu-

nately, for the damage detection of civil structures, selecting speci�c modes may not be

practical because (1) usually only a few fundamental modes can be estimated from the

vibration test of a structure, and (2) the contribution of a mode for the damage detection

depends on the actual damage locations which are unknown when modes are selected.

3.1.6 E�ect of the Number of Modal Data Sets

Better damage assessment can be achieved by accumulating modal data sets from

vibration tests. To investigate the e�ect of the number of modal data sets Ns, four cases

are conducted by increasing Ns from 1 to 10. For all cases, Ldam = f2; 6g; Ddam =

f30%; 10%g and a 5% noise level are assumed. The �rst and the second modes are

estimated by the measurements on the second and the fourth stories. The diagnosis

results presented in Table 6 show that the proposed method identi�es the actual damage

locations when Ns � 5. For case 1, since the branch-and-bound search dose not �nd the

actual damage event, the rank of the actual damage event is denoted as not found in

Table 6.

Table 6: E�ect of Data Set Number

Case Ns Rank

1 1 not found

2 3 8

3 5 1

4 10 1

Ldam=f2,6g, Ddam=f30%,10%g, Noise=5%

Measured DOFs=f2,4g, Estimated Modes=f1,2g

Table 7 shows the results of the re-diagnosis of the previous cases, which failed to rank

the actual damage event as the most probable one, by increasing the number of data sets.

For the previous case 3 of Table 1, the rank of the actual damage event changes from

eighth to �rst after increasing the number of data sets Ns from 3 to 5. Table 7 also

shows the other cases in which the actual damage locations are properly detected after

increasing Ns. However, for the previous case 5 of Table 2, where only one DOF is

measured, the proposed method fails to identify the actual damage locations even after

increasing Ns to 20. This illustrates that su�cient measured DOFs and number of data

sets are required for damage detection.
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Table 7: Improvement of Diagnosis Results by Increasing Data Set Number

Case Ddam Noise MODEm DOFm Ns Rank

case 2 of table 1 f30%,10%g 1% f1,2g f2,4g 3!5 5!1

case 3 of table 1 f30%,10%g 5% f1,2g f2,4g 3!5 8!1

case 4 of table 1 f30%,10%g 10% f1,2g f2,4g 3!20 10!1

case 2 of table 3 f60%,20%g 5% f1,2g f2,4g 5!10 21!1

case 3 of table 3 f90%,30%g 5% f1,2g f2,4g 5!10 28!1

case 4 of table 5 f30%,10%g 5% f5,6g f2,4g 3!20 7!1

case 3 of table 2 f30%,10%g 10% f1,2g f3,5g 5!20 15!1

case 4 of table 2 f30%,10%g 10% f1,2g f2,4g 5!20 14!1

case 5 of table 2 f30%,10%g 10% f1,2g f3g 5!20 13!9

For all cases, Ldam=f2, 6g

3.2 A Two Story Three Dimensional Frame Structure

A two story frame structure, shown in Figure 5, is employed to validate the proposed

method for three dimensional problems. The analytical model is assumed to be identical

to the actual structure, and has 48 DOFs (24 rotational DOFs and 24 translational

DOFs). Each beam and column is modeled as a substructure. Altogether, the system

consists of 16 substructures. For all the cases considered in this example, �ve fundamental

modes are estimated. The modal parameters are measured at 5 DOFs out of the total

48 DOFs. Two con�gurations of the measured DOFs are shown in Figure 6. In addition,

three sets of the estimated modal parameters are simulated by perturbing the exact

modal parameters with a 5% noise level.

Total DOFs = 48
Total Elements = 16
Total Nodes = 12
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Figure 5: A Two Story Frame Structure

As shown in Table 8, the four cases are conducted by changing the damage locations

and amount. The modal parameters are measured at the DOFs shown in Figure 6 (a). For

case 1, the �rst substructure is subject to a 20% decrease in the sti�ness. Case 2 assumes

20% and 40% sti�ness decreases in the 10th and the 11th substructures, respectively.

Case 3 assumes 20% and 40% sti�ness decreases in the 1st and the 14th substructures,
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Table 8: Diagnosis Results of A Two Story Frame Structure

Actual Damage Estimated Damage

Case Ldam Ddam L̂dam D̂dam Ns Rank

1 f1g f20%g f1g f20%g 5 1

2 f10,11g f20%,40%g f10,11g f20%,40%g 5 1

3 f1,14g f20%,40%g f1,11,14g f20%,20%,40%g 5 1

f1,14g f20%,40%g 2

4 f1,14g f20%,40%g f1,14g f20%,40%g 10 1

Measured DOFs=f3,16,28,32,48g, Estimated Modes=f1,2,3,4,5g

Noise=2%, Ns=5

Table 9: Comparison of Two Measurement Strategies

Case DOFm Rank

5 f3,16,28,32,48g not found

6 f8,13,20,25,32g 1

Estimated Modes=f1,2,3,4,5g, Noise=2%, Ns=5

Ldam=f1,5g, Ddam=f20%,40%g

respectively. All the damaged substructures are shown as circled numbers in Figure 5.

For cases 1 and 2, the proposed method �nds the exact damage locations as well as

the exact damage amount. Case 3 ranks the actual damage event as the second most

probable event; the most probable event corresponds to the actual damage locations

(the 1st and the 14th substructures) with one extra location (the 11th substructure).

After increasing the number of modal data sets from 5 to 10, the actual damage event is

properly identi�ed as the most likely one as shown in case 4.
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(b) measurement con�guration 2

DOFm=f8, 13, 20, 25, 32g

Figure 6: Two Di�erent Con�gurations of Measured DOFs

Table 9 investigates the e�ect of measured DOFs on damage detection by comparing

two di�erent con�gurations of measured DOFs as shown in Figure 6. 20% and 40%

damage are assumed in the �rst and the �fth substructures for both cases. Since the

actual damage event is not found by the branch-and-bound search for case 5, the rank
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of the actual damage event is represented as not found in Table 9. In dynamic analyses,

the inertial e�ects associated with rotational DOFs are usually small. In addition, the

axial deformations of beams and columns can be ignored in many cases. As a result,

lateral DOFs provide more information than rotational and vertical DOFs. For case 5,

three rotational, one vertical and one horizontal DOFs (DOFm=f3, 16, 28, 32, 48g) are

measured, and for case 6 the measured DOFs f8, 13, 20, 25, 32g are all lateral DOFs.

The results of Table 9 show that the measured DOFs in case 6 are more appropriate for

the detection of damage in the �rst and the �fth substructures.

3.3 A Five Story Three Dimensional Frame Structure

The applicability of the proposed method is illustrated when di�erences exist between

the baseline structure and the simpli�ed model. The �rst example neglects the measure-

ment noise to highlight the e�ect of modeling error, and the second example considers

both modeling and noise errors. In this example, a FE model of a �ve story frame struc-

ture serves as the baseline structure. The term baseline structure is used to represent

a structure from which the experimental modal parameters are simulated. A simpli�ed

model, which the proposed method works with, is formed by employing the modeling

approach described in Subsection 2.4. Furthermore, for the calculation of eM(�Ho
) in

Equation (18),  ̂h
m
is simulated by perturbing the modal parameters of the initial FE

model with noise.  (�Ho
) is obtained by solving an eigenvalue problem of the simpli�ed

model. That is, eM(�Ho
) is de�ned as the modal error caused by the di�erence between

the baseline structure and the simpli�ed model.
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Figure 7: The Baseline Structure and The Simpli�ed Model of A Five Story Frame Structure

Figure 7 (a) and (b) show the baseline structure and the simpli�ed model, respectively.

While the baseline structure has 6 DOFs at each node (three translational and three

rotational DOFs), the simpli�ed model has only 3 DOFs at the mass center of each oor.

For the current �ve story example, the baseline structure has 120 DOFs and the simpli�ed

22



Table 10: E�ect of Modeling Error in A Five Story Frame Structure

Actual Damage Estimated Damage

case Ldam Ddam L̂dam D̂dam Ns

1 f5,9g f50%,50%g f5,9g f60%,50%g 1

2 f9,11g f40%,60%g f9,11g f50%,70%g 1

3 f18,20g f20%,10%g f18,20g f20%,10%g 1

Noise=0%, Measured DOFs=f1,2,...,15g, Estimated Modes=f1,2,...,6g

model has 15 DOFs. In many vibration tests of building structures, modal vectors are

evaluated at the mass center of the oor diaphragm. To simulate the estimated modal

vectors of a structure, the modal vector of the FE model is reconstructed at the mass

center of every oor. That is, the components of the estimated modal vector correspond

with those of the simpli�ed model. The �rst six fundamental modes are assumed to

be estimated. The �rst and fourth modes are the �rst and second bending modes,

respectively, in the X-direction of Figure 7. The second and �fth modes are the �rst and

second bending modes, respectively, in the Y-direction. Furthermore, the third and sixth

modes correspond to the �rst and second torsional modes, respectively.

3.3.1 Consideration of Modeling Error

Table 10 shows the diagnosis results of three di�erent damage scenarios, considering

the di�erence between the baseline structure and the simpli�ed model. Case 1 assumes

a 50% sti�ness decrease in the 5th and the 9th substructures. For case 2, 40% and 60%

decreases in the sti�ness are imposed on the 9th and the 11th substructures, respectively.

Case 3 assumes 20% and 10% sti�ness decreases in the 18th and the 20th substructures,

respectively. Figure 7 (a) shows the damaged substructures as circled numbers. Sub-

structures are de�ned as beams and columns in the baseline structure. Since the sti�ness

matrix of the simpli�ed system is represented as an assembly of the e�ective sti�ness con-

tribution of each substructure [see Equation (34)], damage locations can be tracked at

the substructure level of the baseline structure. That is, damage locations are identi�ed

in the baseline structure, not in the simpli�ed model.

For all cases, the proposed method properly identi�es the actual damage locations.

The estimated damage amount is, however, slightly di�erent from the actual damage

amount for cases 1 and 2. This can be explained as follows: We search for the most

likely hypothesis Hmax and the corresponding nondimensional parameter value �max

Hmax

which minimize the approximated error function J(	̂Ns
;�Hj

) de�ned in Equation (22).

For the exact de�nition of J(	̂Ns
;�Hj

), eM(�Hd
), which is the modal error caused by

the modeling error after damage occurrence, should be evaluated. However, the actual

damage locations and amount, which are required to evaluate eM(�Hd
), are unknown.

Therefore, eM(�Hd
) is approximated by eM(�Ho

), which is the modal error caused by the

modeling error before damage occurrence, assuming that the modeling error is constant

for arbitrary damage locations and amount (eM(�Hj
) �= eM(�Ho

); 8�Hj
).

For comparison of eM(�Ho
) and eM(�Hj

), the selected components of eM (�Ho
) and

eM(�Hj
) are listed in Table 11. The error components corresponding to the �rst six
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Table 11: Comparison of eM (�Ho
) and eM (�Hj

)

 i(�Ho
) eM;i(�Ho

) eM;i(�Hj
)

Case 1 Case 2 Case 3

(a) Components corresponding to the frequencies

Mode !i
1 1.7313 0.0030 0.0053 (0.13%) 0.0035 (0.02%) 0.0030 (0.00%)

2 2.4566 0.0281 0.0282 (0.00%) 0.0282 (0.00%) 0.0281 (0.00%)

3 2.9106 0.0070 0.0079 (0.03%) 0.0082 (0.04%) 0.0076 (0.02%)

4 5.7511 0.0157 0.0014 (0.30%) 0.0078 (0.14%) 0.0157 (0.00%)

5 7.6658 0.0935 0.0943 (0.01%) 0.0948 (0.02%) 0.0948 (0.02%)

6 9.1053 0.0956 0.0557 (0.44%) 0.0415 (0.59%) 0.0981 (0.03%)

(b) Components corresponding to the modal vectors

DOF v1

1 0.1559 0.0003 0.0002 (0.06%) 0.0002 (0.05%) 0.0003 (0.00%)

2 0.4274 0.0009 0.0004 (0.12%) 0.0006 (0.05%) 0.0009 (0.00%)

3 0.6865 0.0013 0.0001 (0.17%) 0.0011 (0.03%) 0.0013 (0.00%)

4 0.8822 0.0012 0.0007 (0.06%) 0.0011 (0.02%) 0.0012 (0.00%)

5 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v2

6 0.1998 0.0014 0.0014 (0.00%) 0.0014 (0.00%) 0.0015 (0.03%)

7 0.4834 0.0029 0.0029 (0.00%) 0.0029 (0.00%) 0.0031 (0.02%)

8 0.7312 0.0032 0.0032 (0.00%) 0.0032 (0.00%) 0.0033 (0.01%)

9 0.9077 0.0018 0.0018 (0.00%) 0.0018 (0.00%) 0.0019 (0.01%)

10 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v3

11 0.1987 0.0001 0.0002 (0.03%) 0.0002 (0.02%) 0.0002 (0.05%)

12 0.4849 0.0022 0.0019 (0.07%) 0.0018 (0.08%) 0.0020 (0.04%)

13 0.7345 0.0029 0.0027 (0.02%) 0.0031 (0.04%) 0.0029 (0.01%)

14 0.9102 0.0013 0.0016 (0.03%) 0.0019 (0.06%) 0.0014 (0.01%)

15 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v4

1 0.4996 0.0005 0.0006 (0.04%) 0.0005 (0.01%) 0.0005 (0.00%)

2 0.9619 0.0022 0.0011 (0.11%) 0.0002 (0.21%) 0.0022 (0.00%)

3 0.6984 0.0084 0.0059 (0.36%) 0.0071 (0.19%) 0.0084 (0.00%)

4 -0.1532 0.0119 0.0103 (1.05%) 0.0119 (0.01%) 0.0119 (0.00%)

5 -1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v5

6 0.5963 0.0004 0.0003 (0.01%) 0.0003 (0.01%) 0.0013 (0.15%)

7 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

8 0.6238 0.0017 0.0016 (0.02%) 0.0016 (0.02%) 0.0024 (0.11%)

9 -0.2603 0.0020 0.0022 (0.06%) 0.0025 (0.18%) 0.0025 (0.17%)

10 -0.9869 0.0071 0.0069 (0.03%) 0.0062 (0.10%) 0.0070 (0.09%)

DOF v6

11 0.5824 0.0021 0.0180 (2.73%) 0.0319 (5.12%) 0.0038 (0.29%)

12 0.9756 0.0053 0.0447 (4.04%) 0.0748 (7.12%) 0.0015 (0.39%)

13 0.5881 0.0125 0.0529 (6.86%) 0.0855 (12.4%) 0.0095 (0.51%)

14 -0.2931 0.0164 0.0348 (6.30%) 0.0466 (10.3%) 0.0148 (0.54%)

15 -1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

*The value in ( ) represents the normalized error, 100� jeM;i(�Ho
)� eM;i(�Hj

)j= i(�Ho
), in percentage
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Table 12: E�ect of Modeling and Noise Errors in A Five Story Frame Structure

Actual Damage Estimated Damage

case Ldam Ddam L̂dam D̂dam Ns

1 f5,9g f50%,50%g f5,9g f60%,50%g 5

2 f9,11g f40%,60%g f9,11g f50%,70%g 10

3 f18,20g f20%,10%g f18,20g f20%,10%g 10

Noise=5%, Measured DOFs=f1,2,...,15g, Estimated Modes=f1,2,...,6g

frequencies are shown in part (a) of Table 11. Next the error components corresponding to

the measured modal vectors are presented in part (b). For simplicity, only the components

corresponding to the DOFs 1 - 5 are tabulated for the �rst and fourth modal vectors (the

�rst two bending modes along the X-direction). Similarly, the components corresponding

to the DOFs 6 - 10 are presented for the second and �fth modal vectors (the �rst two

bending modes along the Y-direction), and the components corresponding to the DOFs 11

- 15 are presented for the third and sixth modal vectors (the �rst two torsional modes).

eM(�Hj
) is computed for the three damage cases in Table 10. To provide a relative

measure on the magnitude of eM(�Ho
), the components of  (�Ho

) corresponding to those

of eM(�Ho
) are presented in the �rst column of each table. Furthermore, a normalized

error de�ned as 100 � jeM;i(�Ho
) � eM;i(�Hj

)j= i(�Ho
) is parenthesized next to each

eM;i(�Hj
) value.

For cases 1 and 2 of Table 11, larger di�erences between eM (�Hj
) and eM(�Ho

) than

those of case 3 are observed especially in the components corresponding to mode 6. This

explains why the estimated damage amount is slightly di�erent from the actual damage

amount for cases 1 and 2. It appears that jeM;i(�Ho
) � eM;i(�Hj

)j increases for higher

modes. However, the magnitude of jeM;i(�Ho
)� eM;i(�Hj

)j remains less than 1 % of the

corresponding  i(�Ho
) for most components. Since the damage amount is small in case

3, the change of the modeling error is negligible, and the proposed method identi�es the

exact damage amount as well as the correct damage locations. From this simpli�cation,

we are able to reduce the size of the system from 120 DOFs to 15 DOFs without losing

signi�cant accuracy.

3.3.2 Consideration of Modeling and Noise Errors

Finally, the measurement noise and the modeling error are taken into account to-

gether to validate the robustness of the proposed method. The same damage scenarios

in Table 10 are re-investigated. The only di�erence from the previous cases is that the

modal parameters of the FE model are corrupted with 5% noise. Table 12 summarizes

the diagnosis results. After increasing the number of modal data sets to a certain num-

ber, the proposed method identi�es the actual damage locations even in the presence

of the measurement noise and the discrepancy between the baseline structure and the

simpli�ed model.

4 CONCLUSIONS AND DISCUSSION

In this paper, a Bayesian probabilistic approach has been applied to detect the most likely

locations and amount of damage in a structure. The system sti�ness matrix is represented
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as an assembly of the substructure sti�ness matrices and a nondimensional parameter

�i is introduced to model the sti�ness contribution of the ith substructure. The mass

matrix is assumed to be known and invariant. Assuming a uniform probability density

function for the nondimensional parameter �i (0 � �i � 1), we formulate the relative

posterior probability of an assumed damage event and apply a branch-and-bound search

scheme to identify the most likely damage event. The measurement noise and modeling

error between the structure and the analytical model are explicitly considered within the

Bayesian probabilistic framework.

Several examples using a shear frame structure, a two story and a �ve story three

dimensional frame structure are simulated to assess the potential applicability of the

proposed method. As long as su�cient modal data sets are available, the proposed

method is able to identify the actual damage locations and amount in most cases where (1)

less than 10% noise levels are achieved in the estimated modal parameters, (2) only 10%-

30% out of the total degrees of freedom are measured, and (3) only several fundamental

modes are estimated. The computational cost of the method is signi�cantly reduced by

using a branch-and-bound search scheme.

While this paper has illustrated the potential applicability of the Bayesian proba-

bilistic approach to damage detection, many interesting research issues remain. First,

the computational e�ort to �nd the most likely nondimensional parameter value �max

Hj
in

Equation (7), increases exponentially with the number of potentially damaged substruc-

tures included in the hypothesis Hj. The computation could become prohibitive when

�max

Hj
is calculated for a hypothesis Hj which assumes a large number of substructures

as damaged. Further e�ort is required to develop an e�cient method to evaluate �max

Hj
.

Second, damage detection techniques, which rely only on the modal parameter infor-

mation such as the one described in this paper, might have the drawback that the damage

locations and amount may not be uniquely determined from the estimated modal data

[24]. Models with di�erently assumed damage locations and amount can produce iden-

tical modal parameters. These models are referred to as output equivalent models [18].

The exhaustive search of all possible models (hypotheses) is infeasible, and a branch-and-

bound search scheme may identify only some models (hypotheses with assumed damage

locations and amount), which locally maximize the posterior probability P (Hjj	̂Ns
) in

Equation (5), and may not detect the global maximum points. In real applications, (1)

since the modal testing measures the dynamic responses at limited points and estimates

only a few fundamental modes, the number of output equivalent models can increase,

and (2) in the presence of the modeling error and the measurement noise, some erro-

neous models could have modal parameters closer to the estimated modal parameters

than the model with the correct damage locations and amount. Therefore, in practice,

more hypotheses should be examined to �nd more local maximum posterior probabilities

and potentially to identify the correct damage event. In the proposed method, a larger

subspace of the hypothesis space can be examined by replacing Pmax in Equation (27)

with P n

max
, where P n

max
is the nth largest posterior probability among the hypotheses

examined so far. This approach allows us to make an explicit trade-o� between the com-

putational cost and the better diagnosis. However further research is required to provide

a systematic guideline for choosing \n" in P n

max
.
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Third, damage is simulated as the deterioration of substructure or element sti�nesses

in this paper. In real structures, damages are developed in the form of fatigue cracks,

loose connections, local bucklings and so on. It is not clear if the substructure approach

can capture these kinds of real damage within the substructure. Further study is required

to relate the physical damage phenomena to the mathematical damage models.

The proposed method is superior to the deterministic approaches, which produce a

single diagnosis result, in that (1) several suspicious damage events are provided with

their relative possibilities, (2) a series of measurement data obtained from vibration tests

can be included to improve the accuracy of the results, and (3) engineering judgment

about possible damage events via some system reliability analysis or experience with

similar structures can potentially be incorporated into the Bayesian framework as the

prior probabilities of the damage events.
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